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Abstract

Enabling process changes constitutes a major challenge for any process-aware
information system. This not only holds for processes running within a sin-
gle enterprise, but also for collaborative scenarios involving distributed and
autonomous partners. In particular, if one partner adapts its private process,
the change might affect the processes of the other partners as well. Accord-
ingly, it might have to be propagated to concerned partners in a transitive
way. A fundamental challenge in this context is to find ways of propagating
the changes in a decentralized manner. Existing approaches are limited with
respect to the change operations considered as well as their dependency on
a particular process specification language. This paper presents a generic
change propagation approach that is based on the Refined Process Structure
Tree, i.e., the approach is independent of a specific process specification lan-
guage. Further, it considers a comprehensive set of change patterns. For all
these change patterns, it is shown that the provided change propagation al-
gorithms preserve consistency and compatibility of the process choreography.
Finally, a proof-of-concept prototype of a change propagation framework for
process choreographies is presented. Overall, comprehensive change support
in process choreographies will foster the implementation and operational sup-
port of agile collaborative process scenarios.
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1. Introduction

The optimal design and implementation of their business processes is
crucial for enterprises. This not only applies to internal business processes,
but also to collaborative processes whose execution involves different part-
ner enterprises. Examples include cross-organizational manufacturing [1] and
tourism [2]. The system-based support of such collaborative processes is re-
alized by process choreographies [3]. In particular, a choreography model
describes the interactions between the partner processes through message
exchanges. In a supply chain process, for example, the Supplier interacts
with the Manufacturer and the Manufacturer with the Customer. The
Customer, for example, may place an order with the Manufacturer by send-
ing a corresponding order message.

In general, the interactions among the partners are visible to the outside
and described by so called public process models (public model for short).
In turn, the public models constitute views on the underlying internal part-
ner processes, the so called private processes. In particular, the models of
the latter (i.e., private models) are not visible to the other partners due to
confidentiality reasons. Altogether, a choreography model consists of the par-
ticipating partners, a global view on all partner interactions, and the public
as well as private models of the partners.

1.1. Research Challenges

Process change has been identified as crucial in most application domains
[4, 5, 6, 58]. The demand for changing business processes arises due to
various reasons such as the advent of new regulations or the emergence of
new competitors at the market. Research on this topic has been extensive and
led to flexible process management technology realized as mature commercial
(e.g., AristaFlow!) and prototypical systems (e.g., CPEE?). So far, however,
approaches dealing with process changes have focused on scenarios in which
a business process is entirely run within a single enterprise. In turn, little
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attention has been paid to changes of process choreographies, even though
the latter demand for agility and flexibility as well [7, 8, 9].

When applying changes to the processes supported by an information sys-
tems, in general, it must be ensured that neither structural nor behavioral
soundness of the process is violated after the change [6]. For process chore-
ographies, additional properties must be guaranteed due to the complexity
introduced by the involvement of autonomous partners as well as the interac-
tions between them. For example, assume that a particular partner applies
a change to its private process. In addition to ensuring structural and be-
havioral soundness of this private process, it must be determined whether its
change affects other partners in the choreography as well. Amongst others,
this means that it must be checked whether the change of the private model
affects the corresponding public model. In this case, it must be further en-
sured that the private model remains consistent with the public model. Note
that this might require adaptations of the public model as well.

In turn, changing the public model of a particular partner might affect
its interactions with other public models, e.g., when deleting an activity that
sends a particular message another partner is waiting for. In order to ensure
compatibility between the public models of the involved partners, therefore,
one may have to propagate the changes from one partner and its public
model to the other partners and their public models. After adapting the
public models of the partners, in turn, the consistency with the underlying
private models must be re-checked to ensure overall consistency. Note that
change propagation cannot always be restricted to direct partners, but might
spread transitively over the entire process choreography.

In general, propagating changes must not infringe the autonomy of the
partners. In fact, adaptations becoming necessary to maintain the consis-
tency and compatibility of the choreography should be suggested to partners,
but the decision whether or not to adopt these adaptations must be left to
them and may be subject to negotiations. In general, such negotiations can
be costly and time-consuming, particularly in case of failure. This paper fo-
cuses on the fundamentals of change propagations in process choreographies
whereas negotiation issues are discussed in [60, 59]. Another challenge con-
cerns the non-availability of information about the private processes of the
partners. Hence, determining the adaptations required for the public and
private models of the partners during change propagation is a difficult task.

Altogether, an approach enabling change propagation in process chore-
ographies must tackle the following research challenges:



1. It must provide change propagation algorithms that ensure consistency
and compatibility for all affected partners.

2. It must handle transitive change propagation across multiple partners.

In order to obtain an operational change propagation framework, we must
further deal with implementation concepts required for realizing the change
propagation algorithms for process choreographies.

1.2. Contribution

This paper provides an extended and revised version of the work we pre-
sented in [8]. First of all, [8] introduced fundamental notions as well as
design decisions such as representing choreography processes as Refined Pro-
cess Structure Trees (RPST) [12] and restricting the set of change operations
to the insertion, replacement and deletion of process fragments (as described
in [13]). This paper adopts these design decisions. Further on, [8] addressed
Research Challenges 1 and 2 by providing propagation algorithms for change
operations REPLACE and UPDATE, whereas other change operations were
not considered. Finally, [8] discussed how the propagation algorithms ensure
consistency and compatibility of the choreography model and highlighted the
problem of transitive change propagation.

Compared to [8], this paper provides significant revisions and extensions
of the results related to Research Challenges 1 and 2. This includes (i) a
fundamental revision of the previous definitions using the mapping functions
between the different choreography models and — in the sequel — the prop-
agation algorithms; (ii) the propagation algorithms for additional change
operations (i.e., Insert and Delete), (iii) extensive illustrations of the algo-
rithms, (iv) a revision of the Replace algorithm, (v) an extended discussion
on transitivity when propagating changes in process choreographies, and (vi)
an extension of the formal evaluation of consistency and compatibility in the
context of respective change. Furthermore, this paper provides novel results
regarding the technical evaluation of our approach. We propose an archi-
tecture for implementing a sophisticated change propagation framework for
process choreographies. This architecture consists of three layers for defining,
executing and changing processes. The core component of the change layer,
which is realized as a proof-of-concept prototype, is the C3Editor. The latter
allows for the import of private, public and choreography models from tools



such as Signavio and jBPM. The C*Pro Editor visualizes the different models
and enables the definition and application of changes to the private models.
Furthermore, it determines and visualizes the partners affected by a change
and the updates required for change propagation. To the best of our knowl-
edge, this is the first prototype enabling change and change propagation in
process choreographies.

Tis paper is organized as follows: Section 2 introduces a motivating exam-
ple, followed by fundamental definitions in Sect. 3. Section 4 then presents
the change propagation algorithms we developed. Section 5 discusses the
handling of transitivity when propagating changes in process choreographies.
Our approach is evaluated in Sect. 6 regarding the consistency and compat-
ibility of the choreography after change propagation. Section 7 provides the
details on the architecture and proof-of-concept implementation. In Sect. 8,
we discuss related work. Section 9 summarizes the paper.
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Figure 1: Choreography Model: Simplified Book Trip Process [2]



2. Running Example and Model Representation

From the perspective of a single partner, three different, but overlap-
ping viewpoints form a collaboration: the private model, public model, and
choreography model [16].

- The private model describes the internal business logic as well as the mes-
sage exchanges this partner is engaged in; i.e.,the private model corre-
sponds to the executable process of this partner. In general, the internal
logic is not visible to other partners.

- The public model sketches the message exchanges from the perspective
of this single partner as well as their sequencing; i.e., it represents an
abstraction of the private activities corresponding to the private model.
Compared to the public model, the private model contains the business
process logic not visible to the other partners.

- The choreography model provides a global view on the interactions of a
collaboration; i.e., it captures all interactions among the partners as well
as the dependencies between these interactions.

2.1. Running Example

We illustrate change propagation issues along the booking trip choreog-
raphy example depicted in Fig. 1. This example is part of the choreography
model described in [2]. It has been modeled using the choreography diagram
elements of BPMN 2.0 and the Signavio tool [14]. The example describes a
collaboration among four partners, i.e., traveler, travel agency, acquirer, and
airline. The traveler sends booking information to the travel agency that,
in turn, contacts the acquirer to request a credit check. If the traveler does
not have enough credit, failure notifications are sent to the travel agency and
airline, which inform the traveler about the reservation failure and purchase
cancellation, respectively. Otherwise, an approval is sent to the travel agency
and the airline is triggered to send the ticket and the purchase confirmation.

Figure 2 depicts a BPMN collaboration diagram listing the public models
of all partners involved in the choreography. Each public model includes the
interactions the corresponding partner is involved in as well as the control
flow between them. Note that Fig. 2 does not show the private models of the
partners, which contain their internal activities (cf. Fig. 3). Finally, merged
together, the public models lead to the choreography model.
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As motivated, in many application scenarios, the partners of a collabora-
tion should be allowed to change their private processes. The specific chal-
lenge compared to local changes of a single process is to propagate change
effects from one partner to the others [8, 9] if required. For example, the
TravelAgency might want to send a questionnaire about customer satis-
faction to the Traveler after booking the ticket. This could be accom-
plished by inserting corresponding activities into the private model of the
TravelAgency; e.g., DevelopQuestionnaire, which constitutes an internal
activiy not visible to other partners, and SendQuestionnaire, which con-
stitutes the public activity to be added as well. Furthermore, a respective
change request needs to be sent to the Traveler who should be able to
receive the corresponding message and respond to it.

In general, change propagation in process choreographies might become
quite complex [8]. Consider the the above example and assume that it is not
the TravelAgency which initiates the collection of customer feedback, but the
Airline through the Acquirer and TravelAgency. In this case, the initial
change will cause transitive effects across multiple partners. To overcome
this problem, the effects of this local change in the private model of one
partner need to be propagated to the concerned partners. As a consequence,
the interactions must be restructured accordingly.



2.2. Model Representation

As a prerequisite for precisely defining the notions of private, public and
choreography model, we need to be able to represent the control-flow relations
between activities and interactions. With the Refined Process Structure Tree
(RPST) [12], this paper adopts a structured representation for this. An
RPST model corresponds to a decomposition of a process model into a set of
single-entry, single-exit (SESE) fragments. Thereby, each node of an RPST
represents a SESE fragment of the underlying process model. Consequently,
the root node corresponds to the entire process model, whereas the child
nodes of a node N correspond to the SESE fragments directly contained
under N; i.e., the RPST parent-child relation corresponds to the containment
relation between SESE fragments. As a key characteristic, the RPST can be
constructed for any process model captured in a graph-oriented notation [17].

We choose the RPST for various reasons. Besides being generic and
language-independent, the RPST is indeed a structured tree representation
of a given model. Note that structured process models are close to BPEL and
are simpler to analyze and easier to comprehend than unstructured models.
However, recent work has shown that most unstructured process models can
be automatically translated into structured ones [18]. Additionally, comput-
ing and propagating changes for unstructured processes is rather complex
and might violate the soundness of the choreography. Transforming un-
structured processes into structured ones, therefore, eases the propagation
of changes and ensures a more sound propagation. Furthermore, using tree
structures instead of usual graph representations significantly reduces the
complexity for calculating the impacts of a change (e.g. parsing, identifying
fragments). Indeed, high-level change operations (cf. Sect. 3) refer to en-
tire process fragments (i.e., sets of activities and gateways) instead of single
nodes. As process models are block structured in RPSTs, in turn, this makes
it easier to identify the fragments to be modified in the processes of the part-
ners involved in a change. Finally, in [12] it was proven that the translation
of the process models to block-structured languages (e.g. BPEL) becomes
easier through their decomposition into RPST. The transformation of graph
models to RPST is linear, idempotent and modular [12].

Figure 4 depicts the tree model of the choreography scenario from Fig. 1.
In essence, the interaction nodes of the original graph are mapped to leaves
in the tree model and represent the Trivial nodes, whereas the control nodes
(i.e., sequence (SEQ), choice (CHC), parallel (PAR), or loop (RPT)) are
mapped to internal nodes (for more details see [12]).
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3. Fundamental Definitions

This section introduces the main definitions used throughout the paper.
Sect. 3.1 provides the formal definitions related to the various models a chore-
ography is composed of. In turn, Sect. 3.2 presents basic definitions related
to change, change propagation, and change operations.

3.1. Process Choreography

A choreography includes three types of models: (i) the private model
representing the executable process and including private activities as well
as interactions with other partners, (ii) the public model (also called the
interface of the process) highlighting solely the interactions of a given partner,
and (iii) the choreography model giving a global view on the interactions
between all partners. In the following we sketch the corresponding definitions.

Definition 1. [(Structured) Private Model] A private model m, of partner
p corresponds to a tree with the following structure’:

Process = PNode
PNode := Activity|ControlNode|Event
Activity = PrivateActivity| InteractionActivity
InteractionActivity == Send(Message, Receiver)| Receive( Message, Sender)
ControlNode := SEQ({PNode})|CHC({PNode})|PAR({PNode})|RPT(PNode)
Event = Start |End

3We use the type definition syntax of the ML language [19]
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SEQ corresponds to a sequence of fragments, CHC to a choice between two
or more fragments, PAR to a parallel execution of several fragments, and
RPT to an iteration over a fragment.

Example 1. In the private process model depicted in Fig. 3, fragment F is
represented as follows:

SEQ(PAR(Send(payment_ok, airline), pr_activ2, Send(approval, travel Age_
ncy)), XOR(pr_activ3, pr_activd))

Definition 2. [(Structured) Public Model] The public model l,, of a partner
p reflects the external behavior of p; i.e., it includes the interactions with other
partners as well as the constraints between them from the viewpoint of p:

LocalModel ::= LNode
LNode = InteractionActivity|ControlNode|Event
InteractionActivity = Send(Message, Receiver)|Receive( Message, Sender)
ControlNode := SFEQ({LNode})|CHC({LNode})|PAR({LNode})|RPT(LNode)
Event == Start |End

Figure 2 represents a collaboration diagram that illustrates the different pub-
lic models of the book trip choreography example. Note that each panel
defines the public model of one single partner.

Definition 3. [(Structured) Choreography Model] A global choreography
model G represents a global view on the interactions between collaborating
partners.

ChoreographyModel = CNode
CNode == I(Sender, Receiver, Message)| ControlNode| Event
ControlNode := SEQ({CNode})|CHC({CNode})|PAR({CNode})|RPT(CNode)
Event == Start |End

I corresponds to an interaction between partners Source and Destination
(i.e., the exchange of message Message).

An example of a choreography model is illustrated in Fig. 1. We define
a fragment F as a non-empty subtree of a private model, public model
or choreography model with single entry and single exit edge (SESE). Re-
garding Definitions 1 - 3, a tree model fragment is represented by elements
PNode, LNode and CNode, respectively. Next, we define a choreography as
the aggregation of all elements necessary for ensuring a sound collaboration
between the participating partners.

11
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Definition 4. [Choreography] We define a choreography C as a tuple
(g7 7)} H) E? ¢7 907 g) wher67

- G is the choreography model (cf. Def. 3).

- P is the set of all participating partners.

- I = {m,}pep is the set of all private models (cf. Def. 1).

- L ={l,}pep is the set of all public models (cf. Def. 2).

- = {1, : l, <> Tplpep is a partial mapping function between nodes of the
public and private models.

-w: L < I is a partial mapping function between nodes of different public
models.

- &€ :G < 1 is a partial mapping function between nodes of the choreography
model and the public models.

Functions ¥ and ¢ can be used to check the consistency between public
and private models (i.e., each private model must be consistent with the
respective public model) as well as the compatibility between public models.

3.2. Change and Change Propagation

In order to represent changes of a choreography, we consider four basic
change patterns: REPLACE, DELETE, INSERT, and UPDATE (cf. Fig. 5).

Definition 5. [Change Patterns]

ChangePattern := REPLACE(oldFragment, newFragment)| DELETE (fragment)
|INSERT (fragment, how, pred, succ)
| UPDATE (activity, attribute, new Value)
how := Parallel | Choice | Sequence
attribute = partner|role|Input| Output

12



REPLACE allows replacing an existing fragment with a new one. DELETE
removes an existing fragment, whereas INSERT adds a new fragment to
the process model between a predecessor node pred and a successor node
succ. Finally, UPDATE allows modifying an attribute of a single activity as
illustrated in Fig. 5. Note that more complex changes can be expressed by
combining these four patterns. Change patterns are defined as follows:

Definition 6. [Change Operation] A change operation is a tuple (5,0)
where o is either the private, public or choreography model to be changed,
and d:0 — o’ corresponds to the change that transforms o into o’.

Example 2. Consider Fig. 3: DELETE(check_and_cash, T acquirer)
deletes the activity check_and_cash from the private model of the Acquirer.

Definition 7. [Abstraction Function] An abstraction function abstry : o +—»
o’ is a projection of a model o according to criterion X. The following holds:
e Vn € o with n satisfies \, = n € o’ (n refers to node).

e Vn,n' € o with n,n’ satisfying A and n precedes n' in o, = n,n’ € o’ A
n precedes n' in o’.

Function abstry(o) transforms a source model o into a target model o’
that solely contains activities satisfying A; e.g., a public model corresponds to
an abstraction of a private model with respect to interaction activities (cf.
Defs. 1-2). The abstraction of a private model may further contain structures
not contributing to process execution (e.g., "empty” branches in a parallel
branching). In this case, refactorings may be applied [20]. Next, we assume
that A = p’ refers to the interactions with p’. Hence, abstr,(l,) corresponds
to the abstraction of [, according to the interactions of p with p’. As result,
we obtain a view on all interactions p has with p’. The abstraction function
allows calculating the propagation effects; e.g., by identifying the effects a
change of a private model has on its corresponding public model.

Example 3. The result of abstracting fragment F (cf. Example 1) ac-
cording to its interactions is as follows:
PAR(Send(payment_ok, airline), Send(approval, travel Age_ ncy))

Definition 8. [Complement Function] Assume that a € p corresponds to
an interaction activity with a partner p'. Then: The complement of a, which
is denoted as @ € p', corresponds to the opposite of a, i.e.,

13



e send(message,p')= receive(message,p).

e receive(message, p')= send(message,p).

If F corresponds to a fragment solely consisting of interaction activities, F
corresponds to a fragment having the same structure as F and replacing each
activity of F with its complement. This function is required to maintain the
compatibility between process partners when propagating changes.

Given an arbitrary set of nodes of a model o, we define v as the function
returning the smallest fragment in o containing all these nodes. This function
allows keeping the effects of a change as local as possible.

Definition 9. [Smallest fragment o] Let o be a model and S be a set of cor-
responding nodes. Then: o, (S) returns the smallest fragment in o containing
all nodes from S. Formally: o, (S) = argming..r{F € 0 |Vn € S,n € F}.

Example 4. In Fig. 1, ag({payment_ok, approval}) = F3 holds.

Usually, determining the changes to be propagated to the partner pro-
cesses requires knowledge about the activities executed before or after the
changed fragment. In this context, the following definitions are useful.

Definition 10. [Preset (Postset)] The preset (postset) of a node n in
model o corresponds to the set of nodes in o that can be executed directly
before (after) n. Formally:

e preset(n,o) ={n’ € o|ISEQ(n',n) € o}
e postset(n,o) = {n' € o|ISEQ(n,n') € o}

We further define the preset (postset) of a fragment F in a given model o
as the fragment of o that can be executed directly before (after) F.

Example 5. Consider Fig. 1. We obtain preset(check_and_cash,G) =
{book_trip} and postset(g1,G) = {g2, ga}-

Definition 11. [T preset) (T_postsety)] In a model o, the transitive preset
(postset) of a node n, according to criterion A, represents the set of nodes
that satisfy X\ and can be executed directly before (after) n.

o T presety(n,o) = preset(n,abstry(o))

e T postsety(n,o) = postset(n, abstry(c))

14



The transitive preset (postset) T presety (T _postsety) of fragment F, ac-
cording to criterion A, represents the smallest fragment F' of ¢ that contains
all nodes satisfying A and being executable directly before (after) F.

Example 6. Consider Fig. 1. We obtain
o T _preset acquirer(check_and_cash, G) = {start}, and

o T _postsetrraperer(92, G) = {credit_card_not_approved}.

4. Change Propagation

Our goal is to enable change propagation in choreographies with multiple
interacting partner processes. Our approach is based on six major steps:
(i) checking wether a change needs to be propagated or is isolated (i.e., the
change is local), (ii) computing the private-to-public effects; i.e., propagating
changes from the private model of the change initiator to its public model,
(iii) computing the public-to-public effects; i.e., propagating changes to the
partners involved, (iv) negotiating the changes with the concerned partners,
(v) computing public-to-private effects (if negotiations have succeeded); i.e.,
each partner calculates internally the effects of the public changes on its
private model, and finally (vi) checking the compatibility and consistency of
the choreography and implementing the changes. Fig. 6 details these steps
and outlines the different actions required to achieve a sound propagation.

When applying a change operation to a partner’s private model, we ex-
tract all interaction activities concerned by the change-interaction activities
are message exchanges with other partners (i.e., sending and receiving mes-
sages). If the list is empty (i.e., the change is restricted to the internal
behavior), the other partners are not affected by the change. Hence, there is
no need for any new agreement on the global choreography. Otherwise, the
list of affected interactions is analyzed to identify all partners involved. Then,
for each of these partners, a relative change computation is accomplished to
determine the changes to be propagated. The latter are computed according
to the change operation type. Then, a negotiation phase is launched with
each affected partner. If all negotiations succeed, we apply consistency and
compatibility checks to ensure the soundness of the obtained models. In turn,
if these models are sound, we update the public models affected by the change
as well as the choreography model and, if necessary, adapt concerned private
models to their new public models. If negotiations do not succeed, either
the change is canceled or it is tried to circumvent those partners with whom

15
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negotiations failed in the past. Note that this propagation strongly depends
on the change pattern applied (i.e., INSERT, DELETE, REPLACE, or UP-
DATE). We sketch the different algorithms needed for propagating changes
depending on the change pattern used. The propagation of change pattern
UPDATE is not considered in this paper, but can be found in [8]. According
to Fig. 6, the focus is on determining the public propagation effects of a
single change (i.e., the parts in dark gray). In particular, we want to iden-
tify whether or not a change is isolated, and compute private-to-public and
public-to-public effects. Negotiation and computing public-to-private-effects
(i.e., effects of changing a partner’s public model on its private model) are
out of the scope of this paper.

4.1. Propagation of Fragment Insertions

The INSERT pattern is used to add a new fragment F to the private
model 7, of a partner p between two consecutive nodes pred and succ. In
the following, we use the example depicted in Fig. 7 to explain and illustrate
the main propagation steps for propagating fragment insertions. Given a
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change operation ¢ of type INSERT applied to a partner’s private model 7,
and F being the fragment to be inserted in 7, between two nodes pred and
succ (cf. Step 1 in Fig. 7), the ripple effects of § can be computed as follows:

1. Isolated or propagating changes. We first check whether F contains
additional interactions or solely private activities by abstracting F with
respect to interactions (cf. Step 2 in Fig. 7). If F' = abstrinteraction(F)
is not empty (i.e., F contains at least one node), new interactions have
been added and a change propagation becomes necessary. Otherwise, the
change is considered as isolated; i.e., no propagation is needed.

2. Private-to-Public effects: In order to compute the impacts on the
public model of the change initiator, we proceed as follows:

e If 7' is not empty, we calculate the corresponding fragment to be added
to the public model [, of change initiator p. The latter is the partner
that initiated the change propagation. For this purpose, we use private-
to-public mapping function v that transforms the elements of F’ into
elements of /,. Note that this will be crucial if the private and public
models are defined in terms of different modeling languages; e.g., in
Fig. 7 the elements of 7, and F might be defined with BPEL, whereas
the ones of F” and [, are defined in BPMN (cf. Step 3 in Fig. 7).

e When inserting F between pred and succ in m,, this results in an in-
sertion of " in [,. To maintain the consistency between m, and [,
F” should maintain the precedence relationship with pred and succ.
Since pred and succ in m, may be private activities without corre-
sponding elements in [,, however, it becomes challenging to identify
the insertion positions pred’ and succ of F” in [, (cf. Step 4 in
Fig. 7). Therefore, we first check whether pred and succ constitute
interaction activities or have corresponding elements in I, (¢(pred) #
(). In this case, we consider the corresponding positions in [,; i.e.,
pred’ = (pred) and sucd = (succ) respectively. Otherwise, we
look at the elements of 7, having corresponding elements in [, and di-
rectly preceding pred (i.e., T_preset,, ;. action(Pred)) and following succ
(i.e., T_postset, eraction(Succ)). Then, F” is inserted between the cor-
responding elements in [, as follows (cf. Step 5 in Fig. 7):

pred)

interaction(

— pred =1 o T _preset

— succd =1 o T_postset succ)

interaction
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3. Public-to-Public effects: In order to calculate the change impacts on
the other partners, we proceed as follows:

e We analyze F” in respect to the list of partners involved in the change.
For each of these partners, we identify the interactions this partner is in-
volved in. Given a partner p;, this induces the calculation of abstr,, (F")
(cf. Step 6 in Fig. 7). In turn, abstraction function abstr,, returns a
connected component including all interactions with py; i.e., F"”.

o F" represents the fragment to be inserted intp the public model [,
of p;. To preserve the compatibility of the collaboration, however, we
must calculate the complement of F” (i.e., F,, = F") and update the
public-to-public mapping function ¢ (cf. Step 7 in Fig. 7). The latter
maintains the correlation between nodes of different public models.

e Given the fragment F” to be inserted between pred’ and succ in [,
(cf. Step 5 in Fig. 7), how can we identify the insertion positions of
the corresponding fragment F,, in [,; i.e., PosIn and PosOut (cf.
Step 10 in Fig. 7). This becomes challenging if pred’ and succ’ of [,
have no corresponding elements in [, , or p has no interactions with p;.
Utilizing the choreography model G then becomes primordial since it
provides a global view on the interactions of all partners. Further, it
contributes to identify the relationships between the elements pred’ and
succ of p, and the interaction activities of p;. The problem is shifted to
finding the corresponding elements of pred’ and succ’ in G (i.e., {(pred’)
and &(succ’) respectively), using the public-to-choreography mapping
¢. Then, we analyze the interactions in G, p; is involved in, and which
precede &(pred’) and follow &(succ); i.e., pred” = T _preset,, ({(pred'))
and succ” = T _postset,, (£(succ’)) respectively. Again, using the public-
to-choreography mapping £ : G — [,1, we identify the insertion positions
in l,, with PosIn = &(pred”) and PosOut = £(succ”). We distinguish
two possible scenarios when inserting F,,:

— Scenario 1: There exist no interaction activities between PosIn and
PosOut in I, . In this case, F,, should simply be inserted between
PosIn and PosOut

— Scenario 2: There exists a set S of interaction activities PosIn and
PosOut in l,,. In this case, F,, is merged with all elements of S.
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4.2. Propagation of Fragment Deletions

The DELETE change pattern allows removing an existing fragment from
a process model. This becomes challenging if the fragment contains interac-
tion activities referring to other partners. If we do not update the processes
of these partners when deleting the interaction activities, incompatibilities
in the choreography are introduced. For example, a partner might then wait
for a message that will never arrive or send a message that will never be con-
sumed. To avoid such errors, a propagation mechanism should be adopted
that keeps the processes (i.e., the public models of the partners) compatible
with each other. Further note that the deletion of an interaction might have
transitive (i.e. indirect) effects that cannot be solely handled based on the
process structure; i.e., knowledge about semantics is required.

Example 7. We consider a supply chain scenario. Assume that a local city
council starts a mew construction project and hence collaborates with a city
planner being in charge of the project execution. In turn, the city planner
interacts with several third party partners responsible for designing, supplying
and building tasks. Therefore, if the city council cancels the project, the city
planner must cancel his contracts with the other partners as well.

This section does not consider the transitive effects of an interaction ac-
tivity deletion, but only its direct structural effects. A non-exhaustive list
of transitive scenarios as well as corresponding solutions are presented in
Sect. 5. In the following, we use the example from Fig. 8 to illustrate the
most important steps for propagating activity deletions. Given a partner
process 7, and the fragment F € 7, to be deleted, we proceed as follows:

1. Isolated or propagating changes: We check whether F solely consists
of private activities. In this case, the change can be considered as isolated
and there is no need for any change propagation. If fragment F contains
interaction activities, in turn, change propagation becomes necessary.

2. Private-to-Public effects: To determine the impact the deletion of the
interaction activity has on the public model of the change initiator, we
apply the following steps:

e We identify all interaction activities to be deleted by abstracting F
with respect to interactions; i.e. F' = abstTinteraction(F) (cf. Step 2 in
Fig. 8).
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e We identify the corresponding elements of F’ in the respective public
model [, of p. To this end, we use private-to-public mapping function
Y and delete all elements of F” = ¢(F) in [, (cf. Steps 3-4 in Fig. 8).

3. Public-to-Public effects: To determine the change effects on the public
models of the other partners, the following is applied: For each partner
p1 involved in F”, we identify all interactions this partner is involved in
by applying abstraction function F"” = abstr,, (F”). For each element of
F". we determine the corresponding element in [, using the public-to-
public mapping function ¢ (i.e., F,, = ¢(F")). Note that the elements of
Fp, are not necessarily directly connected in [, ; they could be separated
by other activities or gateways instead. To handle this case, for each of
these elements we generate a separate delete operation. Finally, after each
deletion, model refactorings may be applied (cf. Steps 5-7 in Fig. 8).

It is noteworthy that the interactions between two partners are often
accomplished synchronously in the sense that the partner process who sends
a message to another partner process may wait for a response from the latter
before proceeding with its execution. In certain scenarios, it might happen
that the response is deleted due to a transitive effect of the first deletion. We
will discuss these transitivity issues in Sect. 5.

4.3. Propagation of Fragment Replacement

Change pattern REPLACE modifies the structure and elements of a given
fragment in a process model. This pattern is particularly useful when the
redesign of the entire process or a part of it becomes necessary; e.g. to op-
timize the flow between the activities; e.g., in the book trip example from
Fig. 1, one might want to replace fragment PAR(Airline notifica
tion failure, TravelAgency notification failure) by changing this paral-
lel branching into a choice CHC(Airline notification failure, TravelAgen
cy_notification_failure). In the following, we refer to the change scenario
from Fig. 9 to illustrate the most relevant steps towards the propagation of
the resulting changes. Given a fragment F € 7, to be replaced by a new
fragment F’, change propagation can be accomplished as follows:

1. Isolated or propagating changes: We first need to determine whether

the fragment replacement constitutes a local change or needs to be prop-
agated to other partners as well. For this purpose, we check whether F or
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F' contain any interaction activities. In this case, a propagation becomes
necessary to maintain the compatibility between the partner processes.
When replacing a fragment by another one, new interaction activities may
be added, existing ones be removed, or the sequencing between interaction
activities be changed. Accordingly, the partners directly affected by the
fragment replacement are those interacting with p in the scope of both F
and F’ (i.e., p1, p2 and p3 in the scenario from Fig. 9).

. Private-to-Public effects: To identify the effects of a fragment replace-
ment on the public model [, of p, we first abstract fragments F and F’
with respect to interaction activities. Then, we identify the corresponding
elements to be replaced in [, using the private-to-public mapping function
;e Fi = ¥ o abstripteraction(F) and Fo = 1) 0 abstrinseraction(F'). The
initial replace request is then transformed into a REPLACE; (Fy,F>)
operation that, in turn, needs to be propagated since it affects the inter-
actions with other partners (cf. Steps 2-4 in Fig. 9).

. Public-to-Public effects: To determine the change effects on the public
models of the other partners, we do the following:

e When replacing F; by F» (cf. Step 5 in Fig. 9), three scenarios are
possible: (i) a partner involved in the original fragment F; is no longer
present in the new fragment F; (i.e., the interaction with this partner
is deleted), (ii) a partner involved in F, was not present in F; (i.e., a
new interaction activity is added), and (iii) a partner is present in both
fragments F; and F3, but with different structure. Note that for one
and the same replacement, we may have to deal with various scenarios of
which each is related to a particular partner. Accordingly, we abstract
both the new and the old fragments F; and J, with respect to each
partner involved in the change. Accordingly, the REPLACE pattern is
translated into a concatenation A of change patterns to be propagated
to the concerned partners.

(i) Deletion scenario: If a partner p’ interacts with partner p in the
context of the original fragment /7 and is not engaged in any interaction
with p in the new fragment F,, we delete the respective interaction
activities from the public model of p’ (cf. Step 6a in Fig. 9). The
deletion scenario is handled similarly as described in Sect. 4.2.

(ii) Insertion scenario: If a particular partner p’ has no interactions
with p in the context of old fragment F7, but interacts with p in the new
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fragment JF5, we must insert the new interactions in the public model
of p' (cf. Steps 6b-8b in Fig. 9). The insertion scenario is propagated
similarly as described in Sect. 4.1.

(iii) Replacement scenario: The last scenario we consider is as fol-
lows: both fragments F; and F, involve interactions with partner p’,
but with different structure. The latter means that the control flow
dependencies between the interactions have changed and, therefore, the
public model of p’ shall be updated to preserve compatibility between
all public models (cf. Steps 6¢-7c in Fig. 9). For example, in the
change scenario from Fig. 9 and in comparison with F;, F5 keeps the
same interaction activities with partner p; for sending and receiving
the messages m and m’, but with different structure; i.e., message m is
not always sent due to the exclusive choice. Consequently, the public
model of p; should be updated and, in turn, the private model of p;
be adapted to the latter if needed. Formally, given F; and Fs, we ap-
ply an abstraction with respect to each partner involved in the change
and compare both results. If abstr, (F;) = abstry(F2) holds, no prop-
agation to p’ is needed since the interactions with p’ remain invariant.
Otherwise, a propagation is needed and the current interactions in
must be changed to ensure compatibility with the new fragment F.

When propagating the changes to p’, first of all, we need to fetch the
matching elements of F; in /. In general, the interactions between p
and p’ in the scope of the old fragment F; € [, do not always have the
same structure or distribution in [, (but the same behavior instead).
This is due to the applied refactorings as well as the different inter-
actions p’ has with the other partners; i.e., two interaction activities,
which are directly connected in sequence in [, are not necessarily di-
rectly connected in sequence in [,;, but could be separated by an interac-
tion activity not involving p instead. The same holds for an interaction
activity surrounded by a parallel branch (i.e., AND) in [, which could
be refactored to a sequence in [,,.

Consider Fig. 9. If we look at F] and F, as the abstractions of Fy
and F» in respect to p;, matching activities of F| = Seq((S(m,p1)),
Y(R(m', p1))) € I, are R(m,p) and S(m’,p) € l,,. Note that these
are separated by another interaction activity referring to p,. To in-
tegrate the change we must transform FJ, using the public-to-public

mapping F,, = ¢(F3), and merge it with the smallest fragment con-
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taining R(m,p) and S(m',p) € l,, (i.e., the gray box in [,, in Fig. 9).
In general, we must consider the smallest fragment containing all inter-
action activities of F] in [,/. Then, we must merge it with the corre-
sponding elements of F5. For this, we must adopt an algorithm that
merges two process models or fragments. Note that merging process
models has been widely studied in literature [22, 23]. The key idea
is to merge different (and overlapping) process models into a single
model without restricting the behavior represented in the original mod-
els. Formally, if we consider + as a merge function, the problem can
be solved by merging F;,, = ¢(F;) with oy, (0(F7)). It is noteworthy
that such a merge might result in different scenarios among which the
corresponding partner should chose the most appropriate one.

4.4. Further Steps and Discussion

This section discusses the change propagation approach and highlights the
main steps that follow the public-to-public change propagation. Note that
the following steps are outside the focus of this paper, but can be considered
as complementary to our work.

Negotiation. Computing change effects on the public models of the part-
ners is automatic, relying on the presented algorithms. As shown in Fig. 6,
after this step, a negotiation phase is required to approve or reject the in-
tended changes. In general, such a negotiation cannot be fully automated,
but requires an agreement among the partners. In particular, negotiations
may involve human actors, e.g., through phone, e-mail, or meetings. Various
approaches [60, 59] exist that have dealt with negotiations in the context
of process choreographies (e.g., based on service level agreements). Finally,
note that negotiations might result in a redefinition of the initial change.

Public-to-private propagation. The propagation of a process change to
the partners’ public models might require adaptations of their private models
as well. In general, these adaptations cannot be determined by the partner
that initiated the change. Accordingly, once all partners involved in the
change have agreed on the public changes, each of them must determine the
required changes of its private model. In particular, the new private model
must be consistent with the changed public model. Note that changes of the
partners’ private processes, in turn, might lead to new changes that need to
be propagated to other partners (i.e., transitivity). Since a change initiator
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must not access the private process of other partners, the partners affected
by the change themselves are responsible for adapting their private processes
to the requested change. In turn, this might lead to cascading effects or even
the multiple involvement of a partner during change propagation.

Change implementation. After all public and private changes are deter-
mined and agreed on, the soundness of the corresponding models is checked,
the changes are implemented, and the public, private and choreography mod-
els are updated.

In [35], a multitude of composite change operations are described of which not
all are considered in this paper. In general, most change operations can be
realized using the basic DELETE and INSERT operations; e.g., REPLACE
can be considered as a combination of a DELETE followed by an INSERT.
However, change propagation complexity varies significantly. Worst case, for
example, the complexity of directly propagating a REPLACE is equal to the
one of a DELETE followed by an INSERT. Indeed, the REPLACE opera-
tion refers to a fragment instead of a single node. Accordingly, replacing
a fragment by a new one not means that all nodes of the old fragment are
changed. Taking the nodes that remain unchanged into account significantly
improves the propagation process and reduces the number of operations to
be propagated. Regarding the REPLACE algorithm (cf. Algorithm 2), the
three possible scenarios (i.e., deletion, insertion and replacement) are solely
generated for parts that have changed. By contrast, unchanged parts do not
require any propagation. However, a DELETE followed by an INSERT will
first delete those parts, which entails a propagation to concerned partners,
and then re-insert the same parts (entailing another propagation).

5. Transitivity of Change Propagation

This section presents a non-exhaustive list of use cases demonstrating
the transitivity effects of the DELETE change pattern and the solutions to
cope with them. Note that this is a semantic issue that cannot be resolved
based on the propagation algorithms presented so far, which solely focus on
structural issues. As example consider a scenario with three partners pq, po
and p3. Assume that p; invokes po and p, invokes p3. The latter returns the
intermediary result to ps, which then applies data transformations before
sending the final result to p;. If now p; decides to delete its interaction with

27



lPar(ner 1 ] lPartneer [Partner3] [Partnern] lPanner 1 ] lPanner 2] [Partners]  [Parinern] [Partner 1] [Partner 2] [Partner3] [partnern]
request(d)
S FHo——— sHe R ste request(d) R
gl —reauestidig o request(d1) | request(d1) R
- a ©
receive(d) g Sd1='(dn) R receive(d1) é """" l<_receive(dt) R
- d=f(d1
) I d=f(d1) receive(d o @
- receive(d) | d2=f(d1) R
R|+& receive(d)
R*@— s
Scenario 1 Scenario 2 Scenario 3
lPartner i l lPanner 2] l Partner 3 l lPartner n l lPartner 1 l lPanner 2] l Partner 3 l l Partner n l lPanner 1 l lPanner 2] l Partner 3 l l Partner n l
sl@eauestd) _ig g|requestidig, |z o | _requestd) |
request(d1) @ request(d1)
® R SH&® R R
& e requestd)) | ______ | || |  ° 1.
Rl«® 1) s R recelve(cﬂ)w é """" R l<_receive(dt ® é """"
eceive(d) |01 " - a=f(d1) ) - d=f(d1)
R|<«& S R receive(d; @Hs R receive(d; @Hs
&o— &o—
Scenario 4 Scenario 5 Scenario 6
l ] change Requestor S send Rreceive @ Original Delete Request @®  Derived Delete Request @)  Derived Insert Request

Figure 10: Transitivity Scenarios

P2, one must further delete the subsequent interaction between p, and ps,
which is solely used to deliver the final result. If a partner deletes an inter-
action, semantically, this means he is unable to afford this service anymore
or he does not need the data anymore. Then, the challenge is to determine
wether an interaction has transitive effects on other interactions, and if yes,
to identify and resolve these transitive effects.

Case 1. Partner p is the final consumer of a data element, and it
launches an interaction that requires a response. Accordingly, p contains
related interaction activities send and receive. Thereby, send is used to re-
quest the data from another partner, whereas the corresponding receive is
used to receive the response to this request from another partner.

e Case 1.1 p deletes the send/receive interaction activities; i.e., it does not
need the data anymore (since p is the final consumer). Accordingly, we
delete send and receive. In case all subsequent interactions with other
partners are solely used to deliver this data, these interactions are deleted
as well (e.g. supply chain scenarios). Of course, it is also possible that
only a subset of the subsequent interactions are used to deliver this data.
These interactions are then deleted only if they do not have any other role
in the choreography; i.e., they are not required to calculate any other data
(cf. Scenario 1 in Fig. 10). If they play another role in the choreography,
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in turn, the subsequent interactions are kept (cf. Scenario 2 in Fig. 10 ).

Example 8. Assume that there are two concurrent requests from part-
ners A and B to partner C'. Further assume that C is involved in sub-
sequent interactions and then replies to A and B. If A deletes its inter-
action with C, we must not delete the subsequent interactions of C since
they are still required to reply to B.

e Case 1.2 p solely deletes the send pattern. We distinguish two scenarios:

(1) Another partner starts the communication instead of p. Accordingly,
we just update the corresponding send with the new partner.

(ii) p is not responsible anymore for triggering the other partner to deliver
the response; i.e., the latter is provided automatically or under certain
constraints. Hence, we delete the corresponding send (cf. Scenario 3
in Fig. 10).

e Case 1.3 p solely deletes the receive pattern. This means either p does
not need the data anymore or the latter is transferred to another partner.
In the first case, we just delete the corresponding receive and look for
other interactions correlated with this response (used solely for delivering
the response, cf. Scenario 4 in Fig. 10). In the second case, we update the
corresponding receive with the new partner.

Case 2. Partner p corresponds to the final consumer of the data, but is
not responsible for launching the first interaction; i.e., p has only the receive.
If p deletes the receive (i.e., p does not need the data anymore), we delete the
corresponding receive as well as all subsequent interactions that are solely
used to deliver this data. All interactions participating in the delivery of this
data, but having another role in the choreography, are kept.

Case 3. Partner p is the starting point, responsible for starting an in-
teraction that results in a response to another partner; i.e., p has the send.
Either (i) another partner is responsible for starting this interaction; then,
we update the send with the new partner, or (ii) the interaction starts au-
tomatically or under other constraints on the target partner; then we delete
the corresponding send. Subsequent interactions are not deleted since we
still need the final data to be delivered to the final consumer.
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Case 4. Partner p is an intermediary partner, and has correlated inter-
action activities receive and send. p receives a request and starts a subse-
quent interaction necessary for delivering the final response to the requester.

e Case 4.1 Partner p deletes both the send and the receive interaction
activities and is unable to provide the data anymore. However, still the
final response to the requestor is needed. In this case, two choices exist:
(i) Looking for another partner that can take over the task of p to deliver
this response. Then, we update the subsequent interactions as well as
the ones of the root partner (i.e., the partner that invoked p and the one
to whom p shall send the result) with this new partner. (ii) Deleting
send and receive as well as all subsequent interactions solely used in the
context of this intermediary data, and looking for another partner or set
of partners that can provide this data. Then, we update the interactions
with the root partners or p. As example consider Scenario 5 in Fig. 10.
If Partner3 is able to accomplish the data transformation (d = f(d;))
of Partner2, the interactions of Partnerl with Partner2, which serve to
deliver data d, are replaced by new ones with Partner3.

e Case 4.2 If p solely deletes the send interaction activity, another partner
is responsible for starting this intermediary interaction or the subsequent
interactions start automatically or under other constraints. In the first
case, we update the corresponding receive with the new partner, otherwise
we just delete it.

e Case 4.3 If p solely deletes the receive pattern, this means that p cannot
take over the tasks necessary to deliver the final data. (ii) If other oper-
ations are necessary to deliver the final data, we look for another partner
that can accomplish the same tasks. (i) If not, we update the Send to link
it directly with the root partner (cf. Scenario 6 in Fig. 10),

Conclusion. We presented a non-exhaustive list of possible scenarios of
transitivity when dealing with change propagation. Clearly, transitivity is a
semantic issue and requires a data model defining the relationships between
the exchanged data objects (e.g., an ontology). Due to privacy issues, in ad-
dition, not all data correlations are always known, and therefore calculating
the transitivity effects remains problematic and cannot be fully automated.
Several proposals exist to predict the transitive effects in process choreogra-
phies based on prediction metrics (e.g. social graphs) [10].
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6. Compatibility and Consistency

This section discusses soundness issues of a process choreography in the
context of change propagation. In particular, we check whether the compat-
ibility and consistency properties of the collaborating business partners are
kept. Accordingly, we assume that the initial public models of the collabo-
rative processes are compatible with each other and that each private model
is consistent with its corresponding public model. We further assume well-
behavedness of the change operation in terms of structure and semantics.
Recently, several proposals were made on checking the soundness of chore-
ographies in terms of compatibility and consistency [15, 24, 25, 26, 27, 28].

Before discussing the compatibility and consistency of the process chore-
ography in the context of change propagation, first of all, we introduce useful
properties. Thereby, Property 1 states that for each node of the public model
of a partner p, there should be a matching element in the corresponding pri-
vate model of p, but not vice versa. Furthermore, Property 2 expresses that
for each node of the public model of a partner p, there should be a match-
ing node in a different public model of another partner. Note that this is a
necessary, but not yet sufficient condition for ensuring compatibility between
public models. Finally, Property 3 states that for each node in a public
model, there should be a matching node in the choreography model. In
particular, for each interaction in the choreography model, there should be
exactly two matching interaction activities in the public models. Formally:

Property 1. V I_node € l,, 3 p_node € m, with 1 (I_node) = p_node.

Property 2. V I_node € l, with type(l-node )=InteractionActivity:
dp #p:3lnode € ly with type(l_node’ )=InteractionActivity N
o(l_node) = l_node'.

Property 3. V l_node € I, : 3 c_node € G such that £(I_-node) = c_node.
Lemma 1. abstry(F) € L, => abstry(F) € abstr,(Ly)
The complement of the abstraction of a fragment F € L, from the perspective

of a participant p' is a fragment of the abstraction of L, according to p.

Proof 1. The proof of this lemma can be based on the following compatibility
properties of choreographies. (c.f. [15])
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o Ifa € L, corresponds to an activity that interacts with partner p', the
following holds: 3b € L,y with b = a.

o Ifa;, aj € L, are two activities interacting with the same partner p/
and B(a;,a;) is a function returning the minimal precedence relation
(i.e., control flow path) between a; and a; [21], the following property
(also denoted as bi-simulation property [15, 18]) holds:

Hbi,bj S Ep/ with bz = a,, bj = CL_J A ﬁ(ai, CLj): B(bub])

6.1. Consistency Checking

In our context, consistency means that the implementation of a busi-
ness process (i.e., a private model) is consistent with its observable behavior
(i.e., public model). This ensures that implementations of private processes
satisfy the interaction constraints defined in the public models [15]. In our
change propagation approach, the public model is defined as an abstraction
of the private model by deleting all model elements not related to any inter-
action (e.g., Property 1). Accordingly, an insertion, deletion or replacement
of a fragment in a private model needs to be transformed into an insertion,
deletion or replacement of the fragment abstraction in the public model (if re-
quired). Since any abstraction preserves the consistency between the original
and abstracted model (cf. [29, 30]), the propagation from private-to-public
does not affect consistency. Regarding deletion or replacement scenarios,
refactorings may be applied. In turn, this eliminates unnecessary synchro-
nization elements (e.g. a parallel branching between an activity and an empty
branch is reduced to a sequence), but does not affect the consistency between
the original and abstracted model. Change propagation might also result in
the insertion, replacement or deletion of a fragment from a public model of a
partner target. If the change is accepted by the latter, the change requester
cannot check for the consistency between the public and private model of
that partner since the private model of the latter is not visible. Our ap-
proach assumes that any partner affected by the change should update his
private model locally if he accepts the change request. In turn, this update
must be consistent with the new version of his public model.

6.2. Compatibility Checking

Compatibility is a soundness criteria that checks whether the interacting
partners are able to communicate with each other in a proper way (e.g., no
deadlocks or livelocks will occur). In this context, [15] distinguishes between
structural and behavioral compatibility:
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Structural Compatibility. It requires that for every message that may
be sent, the corresponding partner is able to receive it. In turn, for every
message that can be received, the corresponding partner must be able to
send a respective message. Regarding our propagation mechanism, structural
compatibility is always preserved. Depending on the change operation type,
for each affected partner we add, update, or remove the complement of what
has been changed in the process of the change initiator. In particular, for each
interaction activity send in one process partner source, we insert or delete the
corresponding receive interaction activity with the expected attributes (e.g.
message) in the process of the partner target (i.e., affected by the change)
and vice versa (cf. Properties 2 and 3, and Lemma 1).

Behavioral Compatibility. 1t considers behavioral dependencies (i.e., con-
trol flow) between message exchanges, i.e, it deals with the ordering of the
partners’ interactions. For example, a Receive encapsulated by a Sequence
in one partner process should not be linked to a Send encapsulated by a
Choice in the process of a different partner. Indeed, this might lead to a
deadlock in case the path containing the Send in the C'hoice is not executed
during runtime.

Assume that (9, 7,) is the change operation to be applied to process model
7, and (J, £,) corresponds to the inferred change to be applied to the pub-
lic model of p. Further, let A be the set of changes inferred from (4, £L,)
to be propagated to its directly affected partners. For each affected part-
ner p;, (d;, L;) represents the inferred change operation to be propagated to
its public model; i.e., A = Aj—1.,(0;, L;), where n corresponds to the num-
ber of affected partners. Note that the number of inferred changes is finite
since we only consider propagations to direct partners. In turn, changes that
might have structural effects on other partners (due to transitive relations)
are propagated to them through their direct partners recursively.

If (0, L,) is invariant (i.e., it does not affect the public model of p), consis-
tency and compatibility are preserved over the collaborative partners. In
addition, since both processes and changed fragments are structured, consis-
tency and compatibility relations can be reduced to those existing between
the fragments affected by the change.

e The INSERT pattern augments the process models of the partners affected

by the change with new activities and gateways respectively. Further,
it does not affect the structural or behavioral dependencies (i.e., control
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flow) between the existing activities. However, some direct precedence
relations between activities may be transformed into transitive ones (due
to the insertion of new activities and gateways). The propagation of a
change operation of type INSERT results solely in change operations of
type INSERT in the public models of the affected partners. According
to a particular partner, the insertion is done with respect to the direct
and transitive dependencies with the activities of the same partner. As
explained in Sect. 4, if F corresponds to the fragment to be inserted in £,,
abstr;(F) is the fragment to be inserted in £;. Note that the latter shows
the same behavior (i.e., control flow) as abstr;(F). In turn, the insertion
position is computed based on the transitive preset and postset of F; with
respect to partner 7. Note that this preserves the order of the fragments
and ensures their behavioral compatibility after propagating the INSERT
operation. This propagation might result in a merge of the fragment to be
inserted with an existing fragment as described in Algorithm 3. In partic-
ular, if the partner affected by the change interacts with different partners
in the scope of the calculated insertion positions (i.e., there exist others
interactions activities between the identified positions pred and succ), the
fragment to be inserted between these two positions must be merged with
the existing interaction activities in between. Accordingly, we assume that
merge function gamma : (F,F’') — F” preserves the behavior of F and
F' in the result F” of the merge.

The DELETE operation reduces the process models of the partners af-
fected by the change. This reduction is accomplished in a symmetric way
on both sides; i.e., p and the partners affected. The deletion of an ac-
tivity on one side results in the deletion of the corresponding @ on the
other. Structural and behavioral compatibilities are kept. However, other
issues emerge, e.g., an activity might wait for data that will never arrive
or send a message that might not be consumed. The solution we proposed
in Sect. 5 deals with typical use cases where the correlated interactions are
updated or deleted accordingly. Note that this neither affects structural
nor behavioral compatibility of the propagation.

The propagation of the REPLACE operation results in three scenarios:
insert, delete, or merge. Assume that the merge function v is correct
and idempotent, preserving the behavior of the merged fragments. We
consider F; and F/ as the fragments to be merged. Then, the behavior of
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Fi is reflected by the merge result v(F;, F}) (cf. Lemma 1).

The consistency between the public and private models of the partners
affected by the change will be checked if negotiations succeed. Each of these
partners must then adapt its private model to the change of its public model.
Using consistency rules, each partner can check locally whether or not its
private model is consistent with its public model. More details about consis-
tency checking and the validation of choreographies can be found in [5, 2].

7. Proof-of-Concept Prototype and Validation

This section outlines the architecture of our change propagation frame-
work for process choreographies and presents the prototypical implementa-
tion of the C®Pro Editor as one of its core components.

7.1. Framework Architecture

Our architecture must provide functions for defining and executing pro-
cess choreographies. Further, it must allow specifying, performing and prop-
agating changes. To meet these requirements, we propose a layered architec-
ture as depicted in Fig. 11. It consists of three layers: Process Definition,
Process Change, and Process Execution.

The main change propagation functions are realized by the Process Change
layer. The C3Pro Editor is one of the core components of this layer that
realizes the change propagation algorithms presented in Sect. 4. Other func-
tionalities provided by existing tools are delegated (e.g. process modeling
and execution); i.e., although we focus on the functionalities of the Process
Change layer, we communicate with the other two layers as well.

In the Process Definition layer, process designers use existing modeling
tools (e.g., Signavio or jJBPM) to create process as well as choreography
models. The latter are serialized as XML or JSON files and serve as input
for the Process Change layer. In turn, the latter layer defines all compo-
nents related to change propagation in choreographies. Most prominently,
the Change Management Service implements Algorithms 3 - 2 as well as the
internal representation (IR) of private, public and choreography models. The
functions of the other components from the Process Change layer are follows:

e Versioning capabilities are provided that allow undoing as well as re-
doing changes
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Figure 11: Architecture of the Change Propagation Framework

e Dynamic adaptation is enabled to deal with the migration of running
process instances.

e Model verification is supported to verify the soundness of the models
resulting after a change.

e Negotiation becomes necessary if a change is not acceptable for a part-
ner. This component deals with strategies applicable if a negotiation
is required (cf. Fig. 6).

All functions provided by the Process Change layer are exposed as a
RESTful service, which allows for a unified access from any client able to
communicate via HT'TP. The Change Management Service can be accessed
with the C3Pro Editor serving as the connector to the Process Definition
layer. The C®Pro Editor provides functions for importing and visualizing
choreography models. Moreover, changes may be applied to the models and
required change propagations to partners be performed, allowing for the sim-
ulation of change propagation. Altogether, the C3Pro Editor serves as the
front end for all components defined in the Process Change layer.

The Change Management Service serves as a pluggable middleware based
on which process engines can be integrated. In particular, this integration
allows these engines to access all components of the Process Change layer.
This implies that after a successful change propagation, which includes nego-
tiation and soundness checks (cf. Fig. 6), the updated choreography models
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Figure 12: C3Pro Editor - Screenshot showing an INSERT operation being performed

are transformed into an executable form being directly passed to the process
engine for enactment (Process Execution layer). In other words, from the
perspective of the Process Change layer, the Process Execution layer serves
as an execution platform for the updated models. The process execution
engine we have chosen is the Cloud Process Execution Engine (CPEE).

7.2. Tool Support: C3Pro Editor

In the following, all occurrences of nodes refer to PNode (i.e., activities
and control nodes) from Def. 1. We implemented the C®Pro Editor as the
first prototypical client realizing the Change Management Service. In par-
ticular, this client component takes the role of a simulation environment
for manually stepping through the change propagation process (cf. Fig. 6),
which allows testing and verifying change scenarios. Altogether, the C3Pro
Editor supports the visualization of
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Figure 13: C®Pro Editor - Screenshot showing a public model after an INSERT operation

1. private, public and choreography models,

2. affected partners’ nodes and fragments depending on the change type

(i.e., INSERT, DELETE or REPLACE), and

3. the models resulting after the application of the calculated changes.

A multitude of process modeling tools exist. For this reason, we delegate
the basic modeling functions to these tools. In our case, we have used Sig-

navio [14].

We export the created models to BPMN 2.0 XML format. In

turn, the latter is directly supported by our change propagation library for
importing models. Once imported, models can be visualized and all changes
be performed with the C3Pro Editor. The latter is accomplished by prop-
agating the changes to each affected partners. The C®Pro Editor not only
visualizes process models before and after a change, it also displays auxiliary
information such as the affected partners’ nodes and fragments. We utilize
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the jBPT* library for handling the transformation of models (private, public
and choreography) to RPST.

We realized the Change Management Service as a Java Library (JAR),
which enables any language running on top of the Java Virtual Machine
(JVM) to access the underlying public classes and static functions. This
allowed us to develop the C®Pro Editor in a rapid fashion, still treating
the Change Management library as a service. A frequently changing API
would have hindered the concurrent development of the service and the edi-
tor. After finalizing the API and identifying the required functionalities, we
implemented the REST infrastructure for the Change Management Service
the C3Pro Editor consumes.

We chose Clojure as programming language that is amendable for rapid
prototyping and iterative development. Further, it has a rich Read Eval Print
Loop (REPL) environment. Its default runtime platform is JVM, enabling
seamless interoperability with the Change Management service. Clojure fol-
lows a functional programming style and provides concurrent functionalities;
the latter are important for GUI application development. Finally, it allows
changing the behavior of a running program without restarting it and hence
reducing development efforts significantly.

Figures 12 and 13 depict screenshots of the C®Pro Editor. The Project
Explorer on the left-hand side shows the current choreography model as well
as the public models of all partners participating in the collaboration. Double
clicking on any one of these items will display the corresponding model as a
graph in the Graph Panel. In turn, the Graph Panel visualizes the selected
graph as expected. Left-clicking on a node in the displayed graph will bring
up its detailed information in the Detail Panel and show the related nodes
in the Related Nodes Panel. The related node depends on the currently
selected one. For each send message, the associated receive message is found
and displayed, and vice versa. If an interaction activity (i.e., a node of
the choreography model) is selected, the actual send and receive messages
are picked from the appropriate public models and displayed in the Related
Nodes Panel. If gateways (i.e., ControlNode of Definition 1) are selected, the
smallest fragment (see Definition 9) that surrounds the selected gateway is
displayed in the Related Nodes Panel.

‘https://code.google.com/p/jbpt/
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Change operations are shown to the user by right-clicking on a node
within the Graph Panel as well as on the left side below the Project Explorer
(as buttons). When clicking one of the provided operations, a dialog window
pops up prompting the user to specify the change. In the scenario depicted
in Fig. 12, the user is asked to load the fragment for the INSERT operation.
Afterwards, the C3Pro Editor applies the change and triggers the change
propagation process required. Figure 13 shows the screen after applying an
INSERT operation. Furthermore, the Graph Panel allows for the display of
a process model in terms of an RPST. Finally, the Change Log shows the
output during the processing of a change propagation.

7.3. Implementation of the Trip Booking Process

As we were unable to find publically available choreography models that
can serve as the basis for our simulation, we opted to use the trip booking
example (cf. Figs. 1 - 3). We used the Signavio Process Editor to model
both the choreography models and the partner-specific public models of the
choreography. Note that it was ensured that all models are structurally as
well as behaviorally sound. Further on, we ensured that the process models
are block-structured, which, in turn, allowed for their easy transformation
into corresponding RPST representations. In case unstructured models shall
be imported, the techniques described in [18] can be applied to transform
most of these models into structured ones. Models are exported as XML files
and then imported as initial data set into the C3Pro Editor. In total, 17068
change operations of type INSERT, DELETE, and REPLACE were created
and tested on the prototype.

8. Related Work

Change propagation has been an active research area in software engi-
neering. In particular, the analysis, evaluation and propagation of changes
have been widely studied in large complex software systems [31, 32, 33, 34,
36, 37, 38]. However, respective approaches cannot be directly transferred to
process choreographies since the latter entail several particularities; e.g., the
distributed model structure, partly unavailable information about partner
processes, dynamic aspects, and specific requirements (e.g., compliance, pri-
vacy and security). Note that these particularities raise additional challenges
for change propagation algorithms, which have been partially addressed by
only few approaches so far.
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In [39], four transfer rules for dealing with dynamic changes of distributed
processes are proposed. These rules use projection/protocol and life cycle
inheritance relations in order to check whether a changed process corresponds
to a subclass of the original one. The suggested method solely allows for
changes preserving inheritance transformation rules, i.e., changes having only
internal effects. Particularly, there is neither a need for change propagation
nor for any new agreements on the global protocols (i.e., the choreography
model) since only inheritance-conforming changes are allowed. By contrast,
our approach also supports changes that affect the external behavior of a
process by computing and propagating them to the affected partners.

In [40, 41], change propagation techniques for partitioned processes are
proposed, where a process model is split into several distributed partitions.
This approach propagates changes applied to the original model to the respec-
tive partitions. It uses a decentralization function to compute the affected
partitions and to infer the changes to be propagated as well. Moreover, it
is one organization controlling the original as well as the derived partitions.
Hence, it becomes easier to exactly compute the affected regions and the
changes to be applied. Note that this differs from our approach since changes
are applied by one partner participating in the choreography and are then
propagated to the others. In particular, our work considers fully distributed
processes; i.e., no partner holds information about another partner’s private
model. Each partner can only view the public models of the other partners.
In the context of changes, this requires a negotiation phase between the af-
fected partners and could have transitive structural and semantical effects
on other partners recursively. As opposed to [40, 41], our work, considers
transitivity issues as well. Other approaches similar to [40] are presented in
[42, 43].

The DYCHOR framework [9] addresses the challenge of propagating chan-
ges in process choreographies as well. Thereby, changes are classified into ad-
ditive and subtractive changes, which may have variant or invariant impact
on the interactions. DYCHOR uses annotated finite state automata to model
choreographies and employs a set of operators to compute the changes to be
propagated. In our work, we propose four change patterns that deal with
more complex fragments instead of single activities solely. This leads to par-
ticular challenges concerning semantical and structural transitivity effects,
and also requires negotiations with the partners affected by the change. We
sketched semantic transitive effects as well as the solutions to deal with them.
The approach adopted in this paper makes change propagation easier since
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process models are structured and only changed regions are affected. Hence,
there is no need for completely re-computing the public models of affected
partners entirely. Instead only the affected regions need to be adapted.

In [44], the problem of dynamic changes and versioning of process models
is addressed. The same challenge is tackled in [45], where an ontology-based
framework for decentralized workflow change management is presented and
different migration rules for dynamic change adaptation are defined. In [46],
change propagation between semantically overlapping process models, whose
elementary as well as complex correspondences have been identified, is pro-
posed. All these approaches are complementary to our work.

In [47], a method for propagating changes applied to a given software
model is presented. In particular, it computes the additional changes re-
quired to meet an emerging change requirement. The approach proposes
techniques to deal with consistency constraints violation. Different repair
solutions (i.e., customizations) are introduced using cost models. In this
approach, UML (Unified Modeling Language) is employed to specify the
software model; further OCL (Object Constraint Language) is used to define
constraints. [48] represents an extension of [47] to support SOA (Service
Oriented Architecture); it is shown how changes can be propagated across
a number of models using the Service-oriented Modeling language (SoaML).
The cost calculation is substituted by a minimal modification strategy that
helps selecting change options in such a way that it accommodates both the
structural and semantic dimensions of SOA models.

[49] presents an approach to propagate changes between process views.
This approach considers a reference model from which several process views
are derived. Further, it uses Petri nets to represent the different models,
as well as means to check consistency after change propagation. A similar
approach is provided in [50]. The models adopted by these approaches are
different from the one described in this paper, where we distinguish between
the private, public and choreography models. Accordingly, we distinguish
between the compatibility public-to-public and the consistency private-to-
public. Further, [49] does not consider the transitive effects of propagation.
A similar approach is presented in [46], which computes change propagation
between process views. However, the relationships between the activities of
the different process views and the corresponding reference model are not
explicit. This approach uses behavioral profiles to identify changed regions.

[51] presents an approach towards the customization of interactions in
choreographies. It adopts TROPOS [52] to represent organizational business
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requirements. A new business requirement of a partner leads to a customiza-
tion of the choreography model, which, in turn, results in a customization
of the public models of these partners. Though [51] describes the general
conceptual approach of propagation, it is unclear how the affected regions
and changes to be propagated are determined. Finally, neither the change
patterns nor the transitivity effects to be handled are discussed in [51].

In [53], an approach for aligning and propagating changes between the
business process model and the corresponding service-component configu-
ration model (SCA) is presented. The purpose of this approach is different
from ours since it does not consider the change propagation between different
process models, but between the business logic and its supporting software
architecture logic instead (i.e., its implementation).

Recently, approaches started to analyze propagation effects when apply-
ing changes in process choreographies. As after a propagation changes can-
not be imposed on affected partners, but are often subject to negotiations,
propagation failures might become expensive. First steps towards the un-
derstanding of the ripple effects of change propagation in choreographies are
taken in [10, 11], where [10] operates on the choreography model structure
and [11] on change log information by applying memetic mining.

Solutions to check the realizability of the choreography in case a specific
reconfiguration or a change is needed are described in [54]. In particular,
this allows avoiding changes that affect the realizability of the choreography.
For this purpose, choreography models are translated into the FSP process
algebra. In [55, 56], an approach to model and validate compliant choreogra-
phies is presented, and techniques to check compliance rules in the context
of process choreographies are defined. Note that these approaches, combined
with change propagation algorithms, can be complementary to our work for
ensuring sound propagations.

9. Summary and Outlook

While business process management has reached a mature level in respect
to enterprise-wide processes, the operational support of cross-organizational
processes still constitutes a big challenge. In many application domains,
however, any technology support will not be accepted if it is unable to cope
with process changes and the evolutionary nature of business processes. This
was confirmed in several case studies we conducted in the automotive domain
(e.g., cross-organizational processes for product change management [61] and
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product release management [62]) as well as in the healthcare domain (e.g.,
cross-organizational processes coordinating the various healthcare partners
involved in the preparation and enactment of a complex surgery [63]). Nev-
ertheless, these case studies have also revealed the high need for a flexible
support of cross-organizational processes.

This paper provides algorithms for propagating process changes in collab-
orative scenarios that involve multiple partners. In order to stay independent
from a particular process specification language, RPST is used for defining
public and private models of the involved partners as well as the choreogra-
phy model. The proposed propagation algorithms consider typical process
change patterns such as INSERT, DELETE, and REPLACE, and are evalu-
ated based on their structural as well as behavioral compatibility.

Certain assumptions are made in this paper. First, the proposed algo-
rithms consider the application of one change operation at a time. However,
in practical scenarios, several change operations might be applied in a com-
bined manner within a change transaction. To incorporate such complex
changes, optimizations on the change transactions as suggested in [57] may
be utilized. These allow calculating the actual effects of the change trans-
action. Second, change propagation might become necessary in a transitive
way, i.e., multiple partners might be affected. This can be handled by apply-
ing the change propagation procedure depicted in Fig, 6 iteratively. However,
it must be considered whether the transitive propagation becomes cyclic. In
this case, mechanisms such as upper bounds on the number of iterations of
propagating changes including rollback mechanisms are conceivable.

Currently, we are integrating the change propagation algorithms proposed
into our cloud-based process execution engine CPEE. Further, we aim to test
and apply these algorithms in future case studies with our partners from the
automotive domain. As future work, we will deal with negotiation and public-
to-private change propagation issues as well. Although our approach is able
to determine the effects changes of a private model have on the public models
of the involved partners, the dynamic effects on the running instances have
not been considered yet. Therefore, as a next step, we aim to explore the
effects of dynamic changes in the context of choreographies, as well as their
impact on already running instances. Furthermore, the presented approach
mainly deals with structural changes of choreographies and the resulting
effects. However, it will be also interesting to extend the choreography models
with data semantics (e.g., an ontology of the used data objects) to better
cope with the transitive effects of changes. Finally, choreography version
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management as well as semantic constraints for choreography changes (i.e.,
to preserve global compliance rules in the context of changes [55]) will be
investigated.
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Appendix A. Propagation of Fragment Deletions

This appendix describes Algorithm 1, which shows the steps required to
determine the effects of a change request of type DELETE has on a chore-

ography.
1. Isolated or propagating changes (cf. Lines 4- 5 in Algorithm 1).
2. Private-to-Public effects(cf. Line 9 in Algorithm 1).

3. Public-to-Public effects (¢f. Lines 10-16 in Algorithm 1).

Algorithm 1: Delete Operation Propagation: Delete_Propagy,(F)

1 Input: - A Choreography C
2 - The fragment F € 7 to be deleted
3 begin
4 if (abStT(interaction) (]:) 7£ @) then
5 ‘ update 7, // local change — no propagation is needed
6 else
7 A + 0 //decomposition result
8 Pa <+ List of all business partners involved in F
9 F! Yo abStr(inteTaction) (]:)
10 for each p’ € Pa do
11 Fpr 4= abstr, (F'')
12 for each n € F, do
13 | A< AA(Delete(p(n)), L)
14 end
15 end
16 end
17 Output: A
18 end

Appendix B. Propagation of Fragment Replacements

This appendix describes Algorithm 2, which shows the steps to determine
the propagation effects of a fragment replacement in choreographies.

1. Isolated or propagating changes (cf. Lines 7-8 in Algorithm 2).
2. Private-to-Public effects (c¢f. Lines 10-11 in Algorithm 2).

3. Public-to-Public effects(cf. Lines 12-33 in Algorithm 2).
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Algorithm 2: Replace Operation Propagation: Replace_Propagy,(F, F')

Input: - Choreography C
- The old fragment to be replaced F € mp
- The new fragment F’

begin

A < () //decomposition result

Pa < List of all partners involved in F U F’

if (F=0 and F'=0) then

‘ invariant change — no propagation needed
else

© 0N O A WN R

=
o

Fir+ o abStr(interaction) (‘F)

Fa o abStr(interaction) (‘7:,)

for each (partner p’€Pp) do

if abstr, (F1) # abstr, (F2) then

if abstr, (F) =0 then

/* Insertion Scenario: call for insert propagation algorithm*/
A AN Insert_Propagn, (abstr, (F'), Preset(F), Postset(F))

e v
o A W N =

else

=
o

if abstr,/ (F') = 0 then
/* Deletion Scenario: call for delete propagation algorithm*/
A AN Delete_Propagn, (abstry, (F))

N =
o ©

else

NN
N =

/* Replacement Scenario */
F{ < abstry (F1)
Fy 4+ abstry (F2)
Fpr v, ((F1)), e(F3)) /*v is a merge function */
A < AAREPLACE(F,, Fy,l,)
for each (activity a € F] such that a ¢ F') do
| A<« AANDELETE(a) /*model refactoring may be applied*/
end

NN N N NN
o N O oA~ W

N
©

end

[
[=]

end

w
=

end

w
[

end

%]
]

end
Output A ;

w
[

]
9]

end

w
(=)

Appendix C. Propagation of Fragment Insertions

In this appendix, Algorithm 3 is presented, which summarizes the steps
required for propagating a change operation of type INSERT to a particular
process partner.

1. Isolated or propagating changes(cf. Lines 5-6 in Algorithm 3):
2. Private-to-Public effects (c¢f. Lines 11-20 in Algorithm 3):
3. Public-to-Public effects (cf. Lines 23-46 in Algorithm 3):
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Algorithm 3: Insert Operation Propagation: Insert_Propag, (F,pred,succ)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Input: - A Choreography C (cf. Definition 4)

begin
if (abStr(inte'raction) (]:) e (Z)) then

end

else

end

The fragment F to be inserted in 7
The insertion position pred and succ € mp

update 7, // local change — no propagation is needed

A < () //The set of changes to be propagated
Pa < {Set of all business partners involved in F}
/*Calculating the insertion position in the public model of the change initiator*/
if ¥ (pred) # 0 then
‘ pred’ < (pred)
else
‘ pred/ — {Q,[}(TL)/TL € Tfpreset(interaction)(pTed)}
end
if ¥ (succ) # 0 then
| succ + (succ)
else
‘ succ’ {’4/1(”)/” € TprStset(interaction)(succ)
end
A+ AN (Insert(y o abstr (interaction) (F), pred’, succ’), lp)
/*Calculating the insertion position in the public model of each partner involved in the
change*/
for each p’ € Pa do
for each n € pred’ do
if p(n) # 0 then
| pred’ « pred’ U{&(n)}
else
| pred”’ < pred” U{¢(n')/n' € T_preset, (n)}
end
end
for each n € succ’ do
if p(n) # 0 then
| succ” « succ” U{¢(n)}
else
| succ” < succ”” U{&(n')/n/ € T_postset, (n)}
end

end
Fpr 4= poabstry 0 0 abstr(interaction)(F)
posIn < &(pred”)
posOut + &(succ’)
if (3n € L between posIn and posOut) then
‘ A<+ AN (Insert(fp/, Parallel, posIn, posOut), lp)
else
‘ A+ AN (Insert(fp/, Sequence, posIn, posOut), lp)
end

end

Output: A /*List of changes to be propagated*/
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